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Abstract.  A novel model has been developed to capture size scale and gradient effects within the context of continuum 
crystal plasticity by explicitly incorporating details of dislocation transport, coupling dislocation transport to slip, 
evolving spatial distributions of dislocations consistent with the flux, and capturing the interactions among various 
dislocation populations.  Dislocation flux and density are treated as nodal degrees of freedom in the finite element 
model, and they are determined as part of the global system of equations. The creation, annihilation and flux of 
dislocations between elements are related by transport equations. Crystallographic slip is coupled to the dislocation flux 
and the stress state. The resultant gradients in dislocation density and local lattice rotations are analyzed for 
geometrically necessary and statistically stored dislocation contents that contribute to strength and hardening. Grain 
boundaries are treated as surfaces where dislocation flux is restricted depending on the relative orientations of the 
neighboring grains. Numerical results show different behavior near free surfaces and non-deforming surfaces resulting 
from differing levels of dislocation transmission. Simulations also show development of dislocation pile-ups at grain 
boundaries and an increase in flow strength reminiscent of the Hall-Petch model. The dislocation patterns have a 
characteristic size independent of the numerical discretization.  

 

INTRODUCTION 

Plastic deformation of polycrystalline metals 
results from the motion of dislocations on specific 
crystallographic slip planes. The dislocations are 
generated at internal sources, glide through the 
material, and may be annihilated when they encounter 
dislocations of opposite character. Interactions of 
dislocations with each other, with second phase 
particles, and with grain boundaries, can impede their 
motion and raise the stress required to move them.  

Continuum models of plastic strain in crystals 
capture deformation by slip on prescribed slip systems. 
The models don’t represent dislocations explicitly; 
they employ a shear rate representing the average 
dislocation slip over a unit thickness [1, 2].  Hardening 
models and kinetic relations have traditionally been 
phenomenological [2, 3], but recent studies have 

employed models that better represent the underlying 
physics [4-6]. These formulations use dislocation 
densities on individual slip systems and evolving mean 
free path lengths as state variables characterizing strain 
hardening. These models also include generation and 
annihilation terms to evolve the dislocation density.  

A more difficult aspect of dislocation motion to 
incorporate into a model is the passage of dislocations 
through the crystal and the coupling of this dislocation 
flux to the continuum shear rate. Restrictions to 
dislocation motion imposed by particles, boundaries or 
gradients in the dislocation field will make slip more 
difficult and increase the stress required for 
deformation. This hardening is related to the ease of 
cross slip and the resistance of barriers, such as grain 
boundaries, to the passage of dislocations. Such 
resistance is responsible for the Hall-Petch effect in 
which strength depends on grain size.   



MODEL FORMULATION 

The goal of this work is to construct a continuum 
crystal plasticity model that makes use of a variety of 
basic dislocation concepts.  Further detail is given by 
Arsenlis, et al. [7]. Some aspects of the model may 
appear complex or lengthy, but the physical 
interpretation of the relations is straightforward. The 
formulation and implementation require tracking 
dislocation populations on each slip system as well as 
dislocation fluxes. The relations for generation and 
annihilation follow the work of Arsenlis and Parks [5]. 

Crystal Model and Hardening Relations 

The crystal plasticity model follows the traditional 
formulation where the deformation is decomposed into 
elastic and plastic parts. The elastic part accounts for 
stretching and rotation of the crystal lattice and the 
plastic part captures deformation due to slip. Slip 
occurs along direction  on a plane with normal 

where these directions are defined in the reference 
configuration. The Greek superscripts denote one of 
the N slip systems active in the crystal. 
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In order to track dislocation fluxes through the 
material and account for differential hardening on the 
slip systems, it is necessary to carry a representation of 
the dislocation population in the formulation. Here the 
dislocations are categorized by their edge or screw 
character as well as a positive or negative polarity, i.e. 

, , , . The edge and screw components 
are denoted by subscripts e and s, respectively, and 
subscripted symbols (+) and (-) denote the polarity.  
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With the dislocation densities resolved into edge 
and screw components, the plastic shear rate on a slip 
system is given by  

 ααααααααα ρρρργ b )( −−++−−++ +++= sssseeee vvvv&  (1) 

where αv is the average velocity of the associated 
dislocation density and b is the Burgers vector. The 
sign convention is such that positive dislocation flux 
quantities result in a positive contribution to a positive 
shear rate. The velocities are a function of the 
dislocation state and the applied stress. The particular 
form is specified in a later section. 

The dislocation density within a material volume 
element evolves through generation and annihilation 
of dislocations as well as flux into or out of the 
volume. Dislocation conservation principles require 

positive and negative densities to be balanced on 
generation and annihilation. It is only through passage 
of dislocations into or out of the volume that an 
imbalance of positive or negative dislocations can 
occur.  

By considering the geometry of dislocation loops, 
expressions for the generation of dislocations are 
postulated to be 
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These relations reflect the creation of edge dislocation 
length by the motion of screw dislocations and the 
increase in screw density by the motion of edge 
dislocations. The αl  represent the average length of 
edge and screw dislocation segments. 

The evolution relations for the dislocation segment 
lengths are based on observations from dislocation 
dynamics simulations [8]. The equation for the 
evolution of the average positive edge line length takes 
the form 
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The relations for the average negative edge line length 
and average screw line lengths are similar and are 
omitted for brevity. The factors are segment-
length interaction matrices. In this particular case it 
accounts for the increase of edge segment length on 
system α due to screw evolution on system β. 
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The model for annihilation assumes that 
dislocations of opposite polarity will combine when 
they come within a capture radius, R , of each other. 
This dipole reaction is facilitated by mutual attraction 
and diffusion, and it will be temperature dependent. 
The form of the annihilation relations employed here 
is: 
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Dislocation Flux Model 

Including the dislocation flux in the model is more 
involved since advection of the dislocation density 
requires knowledge of its divergence. As a nonuniform 
dislocation field moves through a region, the 
dislocation density at a fixed point in the material will 
rise and fall.  This necessitates including some 
measure of the dislocation gradient in the formulation.  
A complete description of this model is given by 
Arsenlis, et al. [7], and only a brief outline is provided 
below. 

The dislocation population within a finite volume 
of material can be expressed as a combination of 
geometrically necessary dislocations (GND) and 
statistically stored dislocations. However, these labels 
should not be attached to specific dislocations. GND 
refers to the imbalance of dislocations of one polarity 
or another, such as there being more + edge 
dislocations than – edge dislocations in the volume. 
They are called geometrically necessary since an 
abundance of one polarity will result in lattice 
curvature. In mathematical terms, the GNDs content is 
described by Nye’s tensor [9] which can be written in 
terms of the dislocation population as [5] 
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where is the tangent line direction to an 
edge dislocation, and the Burgers vector, b, is coaxial 
with m. The statistically stored dislocations comprise 
the remainder of the population.  
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Since the GND content is explicitly connected to 
lattice curvature, relations can be constructed 
expressing Nye’s tensor in terms of continuum tensors 
describing deformation and rotation of the crystal 
lattice. While several representations have been 
proposed, here the form advocated by Cermelli and 
Gurtin [10] is chosen.  

 ( ) pTp FFA Curl=  (6) 

where the derivative involved with the curl operator is 
in the reference configuration. The GNDs defined in 
this manner clearly comprise a gradient, and this 
gradient participates in flux-related changes in 
dislocation density. 

The connection between continuum variables and 
dislocation content can be made by equating the 
expressions given for Nye’s tensor in Eqs (5) and (6). 

More specifically, a connection between the evolution 
of dislocations involved in the GNDs and the 
continuum deformation rate can be obtained by 
equating the rates of Eqs (5) and (6). This becomes 
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These dislocation evolution rates are associated with 
the dislocation flux, but it is important to note that the 
fluxes cannot be uniquely determined from this 
relation. Only the differences are prescribed. An 
increase in dislocations of one sense cannot be 
distinguished from loss of dislocations of the opposite 
sense. In addition, an equal flux of positive and 
negative sense dislocations is not captured. 

By appealing to certain physical considerations, a 
possible set of evolution equations may be developed 
by assuming that the polarity of the dislocation density 
in a given slip system results from processes involving 
dislocation densities within the slip system.  Rewriting 

in terms of crystallographic dislocation densities,  pL
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with  given by Eq (1), and separating the 
contributions of each of the dislocation densities, the 
proposed form for the positive edge and screw density 
evolution rates due to dislocation flux are, respectively  
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  and  in Eqs (9) and (10) are dimensionless 
functions with properties 

ef sf
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The dislocation density evolution rate due to negative 
edge and screw fluxes are similar to Eqs (9) and (10) 
with some sign changes and f replaced by (1-f) [7]. 

In addition to the edge and screw density increases 
due to dislocation flux, there is also an increase in jog 
density. The jog density has not been explicitly 
incorporated into the model at this point, mainly 
because climb of edge dislocation has been ignored 
and the density of jogs formed by statistical 
interactions of gliding densities is assumed to be much 
lower than the edge and screw densities.  

The terms in the proposed density flux equations 
can be interpreted in terms of physical processes. The 
first term is a flux gradient in the direction of motion 
of the dislocation line segments. This is the imbalance 
of dislocations entering and leaving the volume on that 
slip plane. The first term in the square brackets is the 
average edge dislocation flux. The remaining 
quantities in the square brackets create edge and screw 
kink density. 

The second term of Eqs (9) and (10) has the same 
quantity in square brackets as the first, but it is 
multiplied by a geometric factor related to lattice 
curvature and GNDs. This accounts for an imbalance 
of dislocations entering or leaving the volume due to 
curvature of the lattice. If the lattice is straight and 
dislocation flux uniform, equal amounts of density 
enter and leave the volume. If, however, the lattice is 
curved, there may be an imbalance of dislocations 
entering and leaving the volume.  

The final two terms of Eqs (9) and (10) deal with 
changed in dislocation density related to configuration 
changes. The third term adds density as the lines are 
stretched.  The final term is similar but related to 
distortion of the volume. 

FINITE ELEMENT 
IMPLEMENTATION 

Implementation of the equilibrium equations in a 
finite element code is common and will not be 

discussed here. Taken by themselves, the dislocation 
density evolution equations resulting from generation 
and annihilation can be integrated as material state 
variables in a local constitutive model. Inclusion of the 
flux gradient terms complicates the implementation. 
The density evolution involves gradients and cannot be 
treated as a local constitutive model. The dislocation 
densities are identified as nodal variables to achieve 
continuity of density from element to element and to 
permit gradient calculations. The densities are treated 
as unknowns to be determined, along with the nodal 
displacements, from a global system of equations. 

The discussion will focus on equations for the 
positive edge dislocation density. The treatment is 
applicable to the other density components.  Begin 
with a relation for the density evolution of the form 

 ( )αααα ρρρρ )()()(0 fluxeannegenee ++++ ++−= &&&&  (12) 

where the terms in parentheses are to be substituted  
from Eqs (2), (4) and (9).   

Motivated by Galerkin formulations, Eq (12) is 
multiplied by a virtual density, ρ~ , and integrated over 
the volume. The resulting equations cannot be easily 
integrated since the average dislocation velocities are 
not nodal variables that can be readily interpolated or 
differentiated. By using the Divergence Theorem, the 
spatial derivatives are transferred to the virtual density, 
yielding a final weak form for the equations. 

The resulting equations can be implemented within 
a finite element framework, and the constitutive 
functions specified can be evaluated at numerical 
quadrature points.  In this weak form, the GND related 
terms are integrated without calculating derivatives of 
the dislocation flux or gradients in the plastic strain 
rate.  Also evident from these equations is that 
additional boundary conditions are needed to properly 
specify the problem when a polarity in the dislocation 
density is considered. A detailed discussion of these 
conditions, their implications, and the implementation 
of the model as a user-defined element in ABAQUS is 
given by Arsenlis, et al. [7]. 

Dislocation density/density-flux conditions must be 
applied at the boundaries to solve the density evolution 
equations. A density-flux condition may be imposed at 
a boundary to set the rate of plastic deformation 
associated with that slip system. A zero density-flux 
condition, with a non-zero dislocation density, is 
equivalent to placing an impenetrable wall at the 
boundary. At a free boundary there is no impediment 
to dislocation flux. The dislocation density at the 
surface can also be prescribed. For example, 



dislocations leave free surfaces due to image forces, so 
a free surface can act as a dislocation sink. In the 
extreme limit with infinite dislocation mobility, a free 
surface would have a zero dislocation density. The 
examples cited below use the two extremes of an 
impenetrable surface with zero dislocation flux 
imposed and a free surface with a zero dislocation 
density prescribed. 

EXAMPLES 

To illustrate the behavior of the model, a series of 
finite element simulations are conducted on a 
simplified geometry using a two-dimensional, plane-
strain idealization of a single crystal. The simulations 
are of simple shear applied to a single crystal. The 
height (y-direction) of the crystal is normal to the 
shearing direction, and it is varied between 3 µm and 
300 µm to illustrate length scale effects. The width (x-
direction) of the crystal is in the shearing direction, 
and it is considered to be infinite. Periodic 
displacement boundary conditions are used in the x-
direction. The displacements on the bottom of the 
crystal at y=0 are constrained. The upper surface is 
constrained from motion in the y-direction and 
displaced in the positive x-direction to apply the 
simple shear loading. 

The simplified crystal geometry consists of a single 
slip system oriented with the slip plane normal in the 
x-direction and the slip direction along the y-axis. The 
configuration resembles a deck of cards stood on end 
and sheared by moving the top parallel to the table 
surface. This geometry supports three dislocation 
densities: a positive and a negative edge density and a 
screw dipole density. The two-dimensional geometry 
restricts the screw density to be non-polar. 

The kinetic model prescribing the average 
dislocation velocities in terms of the resolved shear 
stress and a dislocation-dependent strength is taken to 
be 
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Thus, the gradient in dislocation density enters through 
the hardening relation as well as the direct coupling to 
the plastic velocity gradient. 

The boundary conditions applied to the density 
/density-flux at the upper and lower surfaces represent 
the extremes of an impenetrable barrier and a free 
surface acting as a strong dislocation sink.  

Results from calculations with the dislocation flux 
constrained at the surfaces are shown in Figs 1 and 2. 
Figure 1 gives contours of accumulated slip on the 
deformed geometries of five different height crystals 
to an average shear strain of 0.05. The restrictions on 
the dislocation flux impede slip at the top and bottom 
surfaces. This results in the noticeable strain gradient 
in the 3 µm thick crystal. The constraint is based on a 
gradient in dislocation density, so it decays within a 
physical length scale. Hence, as the crystal size 
increases, the effect of the constraint is confined to a 
smaller fraction of the overall crystal height. The 
300µm case has nearly uniform shear through the 
thickness. The result of that simulation is similar to the 
prediction without the flux terms included. 

Figure 2 shows the shear stress-shear strain curves 
for these five simulations. For the thicker cases the 
gradient at the boundary affects only a small portion of 
the total region modeled and the influence of the flux 
boundary conditions is minimal. As the thickness 
decreases, the effect of the boundary constraint 
becomes dominant and the stress required to deform 
the crystals increases. 

 

 

FIGURE 1.  Contours of slip for sheared films with the 
surface dislocation flux constrained. The labels beneath each 
figure denote their height. 

 



 

FIGURE 2.  Contours of slip for sheared films with the 
surface dislocation flux constrained. 

Results from calculations using the boundary 
condition at the other extreme are shown in Figs 3 and 
4. Here the surfaces act as a sink for dislocations. 
Figure 3 gives contours of accumulated slip on the 
deformed geometry for the same five thicknesses that 
were used in the previous simulations. Unlike the 
previous examples, here greater shear occurs near the 
ends for the thinner specimens. The boundary 
condition depletes the dislocation population and, 
according to Eq (13), lowers the resistance to shear. As 
the thickness increases, the effect is confined to a 
smaller and smaller fraction of the overall height, 
similar to the constrained flux boundary condition. 

The shear stress-shear strain curves for these 
calculations are shown in Fig. 4. Unlike the 
constrained end conditions, the response shows little 
size dependence.  

 

 

FIGURE 3.  Contours of slip for sheared films with a free 
surface boundary condition acting as a dislocation sink. The 
labels beneath each figure denote their height. 

 

FIGURE 4.  Contours of slip for sheared films with a free 
surface boundary condition acting as a dislocation sink. 
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